H=-16t^2+124t+32

Simple and best practice solution for H=-16t^2+124t+32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+124t+32 equation:



=-16H^2+124H+32
We move all terms to the left:
-(-16H^2+124H+32)=0
We get rid of parentheses
16H^2-124H-32=0
a = 16; b = -124; c = -32;
Δ = b2-4ac
Δ = -1242-4·16·(-32)
Δ = 17424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{17424}=132$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-124)-132}{2*16}=\frac{-8}{32} =-1/4 $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-124)+132}{2*16}=\frac{256}{32} =8 $

See similar equations:

| H=1024-16t^2 | | 4x^2+-5x+-12=0 | | 20x^2-48x-48=0 | | 20x^2-48x48=0 | | 10x+4-2x=8+3x | | 5x-2x=4-5 | | g(6)=1 | | -2(b-18)=16 | | 5(x-1)=(x-2) | | 7x+25=64 | | 3(-4b)+40/2=-4b | | F(x)=2/5x-12 | | 9+2=(-6j)+7 | | 4x+6+55=180 | | 4=10x=31+x | | -(r+6)=-14 | | 3d+5d=3 | | -7j-14j+9=12 | | x+7+3x=43 | | 2m+9+m=33 | | 2m+9+m=m | | (x^2-3x)^2-14(x^2-3x)+40=0 | | 7b+5=35-3b | | -5/4t=9 | | -9=5/4x | | 5(3-x)=-2x+6x | | 4x-7x-14=-3x+5-14 | | v(13)=20.000(0.84)13 | | 80x=100(x+3) | | 35-y=23+4y | | 2x=L/60 | | -14z-26=40 |

Equations solver categories